“Scipy”的版本间差异

来自Shiyin's note
跳到导航 跳到搜索
无编辑摘要
无编辑摘要
第1行: 第1行:
http://www.scipy-lectures.org
http://www.scipy-lectures.org


*求函数最小值
==求函数最小值==
:Methods based on conjugate gradient are named with ‘cg’ in scipy. The simple conjugate gradient method to minimize a function is scipy.optimize.fmin_cg():
*Methods based on conjugate gradient are named with ‘cg’ in scipy. The simple conjugate gradient method to minimize a function is scipy.optimize.fmin_cg():
:In scipy, scipy.optimize.fmin() implements the Nelder-Mead approach: (不太依赖于倒数)
*n scipy, scipy.optimize.fmin() implements the Nelder-Mead approach: (不太依赖于倒数)
:Brute force: a grid search
*Brute force: a grid search
scipy.optimize.brute() evaluates the function on a given grid of parameters and returns the parameters corresponding to the minimum value.
:scipy.optimize.brute() evaluates the function on a given grid of parameters and returns the parameters corresponding to the minimum value.The parameters are specified with ranges given to numpy.mgrid. By default, 20 steps are taken in each direction:
*Non-linear least squares: Levenberg–Marquardt algorithm implemented in scipy.optimize.leastsq().
The parameters are specified with ranges given to numpy.mgrid. By default, 20 steps are taken in each direction:
*If the function is linear, this is a linear-algebra problem, and should be solved with scipy.linalg.lstsq().

2017年10月1日 (日) 12:58的版本

http://www.scipy-lectures.org

求函数最小值

  • Methods based on conjugate gradient are named with ‘cg’ in scipy. The simple conjugate gradient method to minimize a function is scipy.optimize.fmin_cg():
  • n scipy, scipy.optimize.fmin() implements the Nelder-Mead approach: (不太依赖于倒数)
  • Brute force: a grid search
scipy.optimize.brute() evaluates the function on a given grid of parameters and returns the parameters corresponding to the minimum value.The parameters are specified with ranges given to numpy.mgrid. By default, 20 steps are taken in each direction:
  • Non-linear least squares: Levenberg–Marquardt algorithm implemented in scipy.optimize.leastsq().
  • If the function is linear, this is a linear-algebra problem, and should be solved with scipy.linalg.lstsq().