“Scipy”的版本间差异
跳到导航
跳到搜索
无编辑摘要 |
无编辑摘要 |
||
第1行: | 第1行: | ||
http://www.scipy-lectures.org |
http://www.scipy-lectures.org |
||
==积分== |
|||
>>> from scipy.integrate import quad |
|||
>>> def integrand(x, a, b): |
|||
... return a*x**2 + b |
|||
>>> a = 2 |
|||
>>> b = 1 |
|||
>>> I = quad(integrand, 0, 1, args=(a,b)) |
|||
==求函数最小值== |
==求函数最小值== |
2017年10月27日 (五) 02:33的版本
积分
>>> from scipy.integrate import quad >>> def integrand(x, a, b): ... return a*x**2 + b >>> a = 2 >>> b = 1 >>> I = quad(integrand, 0, 1, args=(a,b))
求函数最小值
- Methods based on conjugate gradient are named with ‘cg’ in scipy. The simple conjugate gradient method to minimize a function is scipy.optimize.fmin_cg():
- n scipy, scipy.optimize.fmin() implements the Nelder-Mead approach: (不太依赖于倒数)
- Brute force: a grid search
- scipy.optimize.brute() evaluates the function on a given grid of parameters and returns the parameters corresponding to the minimum value.The parameters are specified with ranges given to numpy.mgrid. By default, 20 steps are taken in each direction:
- Non-linear least squares: Levenberg–Marquardt algorithm implemented in scipy.optimize.leastsq().
- If the function is linear, this is a linear-algebra problem, and should be solved with scipy.linalg.lstsq().