“Scipy”的版本间差异
跳到导航
跳到搜索
无编辑摘要 |
无编辑摘要 |
||
第19行: | 第19行: | ||
*Non-linear least squares: Levenberg–Marquardt algorithm implemented in scipy.optimize.leastsq(). |
*Non-linear least squares: Levenberg–Marquardt algorithm implemented in scipy.optimize.leastsq(). |
||
*If the function is linear, this is a linear-algebra problem, and should be solved with scipy.linalg.lstsq(). |
*If the function is linear, this is a linear-algebra problem, and should be solved with scipy.linalg.lstsq(). |
||
==文件输出== |
|||
# Some test data |
|||
x = np.arange(200).reshape((4,5,10)) |
|||
# Specify the filename of the .mat file |
|||
matfile = 'test_mat.mat' |
|||
# Write the array to the mat file. For this to work, the array must be the value |
|||
# corresponding to a key name of your choice in a dictionary |
|||
scipy.io.savemat(matfile, mdict={'out': x}, oned_as='row') |
|||
# For the above line, I specified the kwarg oned_as since python (2.7 with |
|||
# numpy 1.6.1) throws a FutureWarning. Here, this isn't really necessary |
|||
# since oned_as is a kwarg for dealing with 1-D arrays. |
|||
# Now load in the data from the .mat that was just saved |
|||
matdata = scipy.io.loadmat(matfile) |
|||
# And just to check if the data is the same: |
|||
assert np.all(x == matdata['out']) |
2018年3月2日 (五) 08:23的版本
积分
>>> from scipy.integrate import quad >>> def integrand(x, a, b): ... return a*x**2 + b >>> a = 2 >>> b = 1 >>> I = quad(integrand, 0, 1, args=(a,b))
求函数最小值
- Methods based on conjugate gradient are named with ‘cg’ in scipy. The simple conjugate gradient method to minimize a function is scipy.optimize.fmin_cg():
- n scipy, scipy.optimize.fmin() implements the Nelder-Mead approach: (不太依赖于倒数)
- Brute force: a grid search
- scipy.optimize.brute() evaluates the function on a given grid of parameters and returns the parameters corresponding to the minimum value.The parameters are specified with ranges given to numpy.mgrid. By default, 20 steps are taken in each direction:
- Non-linear least squares: Levenberg–Marquardt algorithm implemented in scipy.optimize.leastsq().
- If the function is linear, this is a linear-algebra problem, and should be solved with scipy.linalg.lstsq().
文件输出
# Some test data x = np.arange(200).reshape((4,5,10)) # Specify the filename of the .mat file matfile = 'test_mat.mat' # Write the array to the mat file. For this to work, the array must be the value # corresponding to a key name of your choice in a dictionary scipy.io.savemat(matfile, mdict={'out': x}, oned_as='row')
# For the above line, I specified the kwarg oned_as since python (2.7 with # numpy 1.6.1) throws a FutureWarning. Here, this isn't really necessary # since oned_as is a kwarg for dealing with 1-D arrays. # Now load in the data from the .mat that was just saved matdata = scipy.io.loadmat(matfile) # And just to check if the data is the same: assert np.all(x == matdata['out'])