“Diffuse ionized gas”的版本间差异
跳到导航
跳到搜索
无编辑摘要 |
无编辑摘要 |
||
第3行: | 第3行: | ||
*This warm (10^4 K), diffuse (n ~ 0.2 cm~3) gas fills 20% of the disk volume and accounts for most of the mass of ionized gas(90 percent). |
*This warm (10^4 K), diffuse (n ~ 0.2 cm~3) gas fills 20% of the disk volume and accounts for most of the mass of ionized gas(90 percent). |
||
:*电子密度比hot gas要高一点( Typical values of the central electron density, central cooling time and total mass for the ETGs are ~ 0.1cm−3, ~ 5 x 10^6 yr and 5 x 1O^9 M⊙) |
:*电子密度比hot gas要高一点( Typical values of the central electron density, central cooling time and total mass for the ETGs are ~ 0.1cm−3, ~ 5 x 10^6 yr and 5 x 1O^9 M⊙) |
||
*In terms of energetics, the Galactic WIM requires at least 10^42 ergs s~1 to remain ionized. This power is more than can be comfortably supplied by supernova shocks, but significantly less than the Lyman continuum luminosity of massive stars. |
*In terms of energetics, the Galactic WIM requires at least 10^42 ergs s~1 to remain ionized. This power is more than can be comfortably supplied by supernova shocks, but significantly less than the [[Lyman continuum]] luminosity of massive stars. |
||
*[http://iopscience.iop.org/article/10.1086/306232/meta] |
*[http://iopscience.iop.org/article/10.1086/306232/meta] |
2016年6月14日 (二) 08:05的版本
银河系中的DIG
- Referred to as the Reynolds layer, or warm ionized medium (WIM);
- This warm (10^4 K), diffuse (n ~ 0.2 cm~3) gas fills 20% of the disk volume and accounts for most of the mass of ionized gas(90 percent).
- 电子密度比hot gas要高一点( Typical values of the central electron density, central cooling time and total mass for the ETGs are ~ 0.1cm−3, ~ 5 x 10^6 yr and 5 x 1O^9 M⊙)
- In terms of energetics, the Galactic WIM requires at least 10^42 ergs s~1 to remain ionized. This power is more than can be comfortably supplied by supernova shocks, but significantly less than the Lyman continuum luminosity of massive stars.
- [1]