“Matplotlib”的版本间差异

来自Shiyin's note
跳到导航 跳到搜索
第51行: 第51行:
plt.legend() #图例 显示前面plot中的label
plt.legend() #图例 显示前面plot中的label


# use keyword args
* use keyword args
lines = plt.plot(x, y)
lines = plt.plot(x, y)
plt.setp(lines, color='r', linewidth=2.0) #[https://matplotlib.org/api/_as_gen/matplotlib.lines.Line2D.html#matplotlib.lines.Line2D]
plt.setp(lines, color='r', linewidth=2.0) #[https://matplotlib.org/api/_as_gen/matplotlib.lines.Line2D.html#matplotlib.lines.Line2D]
# plt.plot() 中的颜色,线型等
* plt.plot() 中的颜色,线型等
:* options for the color characters are: 'r' , 'g' , 'b' = blue, 'c' = cyan, 'm' = magenta, 'y' = yellow, 'k' = black, 'w' = white
:* options for the color characters are: 'r' , 'g' , 'b' = blue, 'c' = cyan, 'm' = magenta, 'y' = yellow, 'k' = black, 'w' = white
:* Options for line styles are: '-' = solid, '--' = dashed, ':' = dotted, '-.' = dot-dashed, '.' = points, 'o' = filled circles, '^' = filled triangles
:* Options for line styles are: '-' = solid, '--' = dashed, ':' = dotted, '-.' = dot-dashed, '.' = points, 'o' = filled circles, '^' = filled triangles
:* marker style [https://matplotlib.org/api/markers_api.html]
:* marker style [https://matplotlib.org/api/markers_api.html]
# Tweak spacing to prevent clipping of ylabel
* Tweak spacing to prevent clipping of ylabel
plt.tight_layout()
plt.tight_layout()



2019年5月28日 (二) 12:16的版本

  • ipython中事先执行 %matplotlib
交互式模式:plt.ion()
关闭交互式:plt.ioff()

配置

pyplot的style配置

  • 使用内置的style
plt.style.use('ggplot')
print(plt.style.available) (当前使用的style)
  • 可以自定义style

For example, you might want to create mpl_configdir/stylelib/presentation.mplstyle with the following:

axes.titlesize : 24
axes.labelsize : 20
lines.linewidth : 3
lines.markersize : 10
xtick.labelsize : 16
ytick.labelsize : 16

Then, when you want to adapt a plot designed for a paper to one that looks good in a presentation, you can just add:

>>> import matplotlib.pyplot as plt
>>> plt.style.use('presentation')

matplotlib的配置

  • 使用matplotlib.rcParams
mpl.rcParams['lines.linewidth'] = 2
mpl.rcParams['lines.color'] = 'r'
  • matplotlib.rcdefaults() 恢复默认配置
  • matplotlibrc file
matplotlib.matplotlib_fname()

简单plot

  • import matplotlib.plot as plt
  • 初始化 clear
plt.clf()
  • 显示图像
plt.show()
  • 简单的例子
plt.figure(1,figsize=(9, 3))
plt.plot(x, y,label='sin') 
plt.errorbar(x, y, xerr=0.1 * x, yerr=5.0 + 0.75 * y, ls='None', marker='s') #误差棒,ls='None' 表示不连线 
plt.xlim(0,3)  #调整坐标范围 或者用 plt.axis([40, 160, 0, 0.03])同时设定x和y轴的范围
plt.xscale('log') # 设置对数坐标格式,,
plt.xlabel('x label')
plt.title("Simple Plot")
plt.legend() #图例  显示前面plot中的label
  • use keyword args
 lines = plt.plot(x, y)
 plt.setp(lines, color='r', linewidth=2.0) #[3]
  • plt.plot() 中的颜色,线型等
  • options for the color characters are: 'r' , 'g' , 'b' = blue, 'c' = cyan, 'm' = magenta, 'y' = yellow, 'k' = black, 'w' = white
  • Options for line styles are: '-' = solid, '--' = dashed, ':' = dotted, '-.' = dot-dashed, '.' = points, 'o' = filled circles, '^' = filled triangles
  • marker style [4]
  • Tweak spacing to prevent clipping of ylabel
plt.tight_layout()

多个panel

 plt.subplot(211) # panels
 plt.subplots_adjust(hspace=0.3) #调整多个panel的间隔
 plt.subplot(212)
 plt.scatter(x, y) 
 plt.subtitle('Categorical Plotting')

latex字符

plt.rc(usetex = True)
plt.xlabel('\\alpha') #转义 参见[5]
plt.xlabel(r'\alpha') #r'代表raw string

coding style

  • 通过关键词来配置图的要素,例子
x = np.arange(0, 10, 0.2)
y = np.sin(x)
fig, ax = plt.subplots()
ax.plot(x, y)
plt.show()
  • axes的配置
ax.semilogx  : 对数坐标
ax.grid :添加grid
ax.set_xlim(xmin=1,xmax=10) #设置坐标范围
  • ax也可以通过 plt.gca()获取

专题

直方图

  • plt.hist() 命令
关键词有 bins=None, range=None, density=None, weights=None, cumulative=False, bottom=None, histtype='bar', align='mid', orientation='vertical', rwidth=None, log=False, color=None, label=None, stacked=False, normed=None
  • coding style
n, bins, patches = ax.hist(x, 50, normed=1)

图像

  • imshow()
delta = 0.025
x = y = np.arange(-3.0, 3.0, delta)
X, Y = np.meshgrid(x, y)
Z = np.exp(-X**2 - Y**2)
fig, ax = plt.subplots()
im = ax.imshow(Z, interpolation='bilinear', cmap=cm.RdYlGn,
              origin='lower', extent=[-3, 3, -3, 3],
              vmax=abs(Z).max(), vmin=-abs(Z).max())     #lower 就是把index[0,0]放在左下,extent是数轴上标志的范围
plt.imshow(Z)

保存图片文件

  • plt.savefig("filename.png")
  • plt.savefig('SFH_LMC_miles.pdf',format='pdf')
  • 保存文件一片空白
在 plt.show() 后调用了 plt.savefig() ,在 plt.show() 后实际上已经创建了一个新的空白的图片(坐标轴),这时候你再 plt.savefig() 就会保存这个新生成的空白图片。
plt.show() 放在最后,或者
    # gcf: Get Current Figure
   fig = plt.gcf()
   plt.show()
   fig1.savefig('tessstttyyy.png', dpi=100)
  • matplotlib.use('PS') # generate postscript output by default #在importing matplotlib.pyplot之前用压倒一切设置